Effect of anchoring group and valent of cobalt center on the competitive cleavage of $\mathrm{C}-\mathrm{F}$ or $\mathrm{C}-\mathrm{H}$ bond activation

Tingting Zheng, Hongjian Sun, Jun Ding, Yanfeng Zhang, Xiaoyan Li*
School of Chemistry and Chemical Engineering, Shandong University, Shanda Nanlu 27, 250100 Jinan, PR China

A R T I C L E I N F O

Article history:

Received 24 February 2010
Received in revised form 14 April 2010
Accepted 27 April 2010
Available online 2 June 2010

Keywords:

Cobalt complexes
$\mathrm{C}-\mathrm{F}$ bond activation
$\mathrm{C}-\mathrm{H}$ bond activation
Anchoring group

Abstract

Treatment of $\mathrm{CoMe}\left(\mathrm{PMe}_{3}\right)_{4}$ with 2,6-difluorobenzophenone imine and 2,6-difluorobenzophenone resulted in $\mathrm{C}-\mathrm{H}$ bond activation complex, $\left[\mathrm{Co}\left(2-\mathrm{C}_{6} \mathrm{H}_{4}\right)-(\mathrm{C}=\mathrm{NH})-\left(2^{\prime}, 6^{\prime \prime}-\mathrm{F}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{3}\right]$ (2), and $\mathrm{C}-\mathrm{F}$ bond activation complex $\left[\mathrm{Co}(\mathrm{Me})(\mathrm{F})\left(2-\left(6-\mathrm{FC}_{6} \mathrm{H}_{3}\right)-(\mathrm{C}=\mathrm{O})-\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]$ (3) respectively. Using Co $\left(\mathrm{PMe}_{3}\right)_{4}$ instead of $\mathrm{CoMe}\left(\mathrm{PMe}_{3}\right)_{4}$ the $\mathrm{C}-\mathrm{F}$ activation $\mathrm{Co}(\mathrm{I})$ complex $\left[\mathrm{Co}\left(2-\left(6-\mathrm{FC}_{6} \mathrm{H}_{3}\right)-(\mathrm{C}=\mathrm{NH})-\mathrm{C}_{6} \mathrm{H}_{5}\right)\right.$ $\left(\mathrm{PMe}_{3}\right)_{3}$] (1), was obtained by the reaction of $\mathrm{Co}\left(\mathrm{PMe}_{3}\right)_{4}$ with 2,6-difluorobenzophenone imine. In the case of mono-fluorinated aromatic ketone, the reaction of $\mathrm{CoMe}\left(\mathrm{PMe}_{3}\right)_{4}$ with $2,4^{\prime}$-difluorobenzophenone afforded only $\mathrm{C}-\mathrm{H}$ bond activation complex, $\left[\mathrm{Co}\left(2-\left(4-\mathrm{FC}_{6} \mathrm{H}_{3}\right)-(\mathrm{C}=\mathrm{O})-\left(2^{\prime}-\mathrm{FC}_{6} \mathrm{H}_{4}\right)\left(\mathrm{PMe}_{3}\right)_{3}\right](4)\right.$ in comparison with the $\mathrm{C}-\mathrm{F}$ activation in the di-fluorinated aromatic ketone 2,6 -difluorobenzophenone system. The crystal structures of complexes 1, 3 and 4 were determined by X-ray diffraction. The proposed mechanisms were discussed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The intramolecular selective activation of $\mathrm{C}-\mathrm{F}$ versus $\mathrm{C}-\mathrm{H}$ bond has attracted a great deal of attention in recent years because of the requirements of "molecular surgery" in modern synthetic chemistry. The priority of selective activation of $\mathrm{C}-\mathrm{F}$ versus $\mathrm{C}-\mathrm{H}$ bond within one molecule is complicated and is related to many factors [1-16]. It has not only thermodynamic but also kinetic reason. A survey of competing $\mathrm{C}-\mathrm{F}$ activation pathways in the reaction of $\operatorname{Pt}(0)$ with fluoropyridines by Perutz was investigated with both computational and experimental methods [17]. In 2008 Klein reported the first regioselective cyclometalation reactions of cobalt in arylketone [18]. It was found that $\mathrm{CoMe}\left(\mathrm{PMe}_{3}\right)_{4}$ activates ortho- $(\mathrm{C}-\mathrm{H})$ and ortho- $(\mathrm{C}-\mathrm{F})$ bonds of aromatic ketones and the ortho-(C-F) activation is preferred over the ortho-(C-H) activation in 2,3,4,5,6-pentafluorobenzophenone. Recently Johnson published a combined experimental and computational study of unexpected $\mathrm{C}-\mathrm{F}$ bond activation intermediates and selectivity in the reaction of pentafluorobenzene with a $\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{Ni}$ synthon [19]. Goldman reported addition at the aryl meta- and para-positions is kinetically more favorable than at the ortho-position, although thermodynamics favor the chelated ortho- $(\mathrm{C}-\mathrm{H})$ addition for

[^0]three coordinate d^{8} metal complexes [20]. Hydrido osmium is capable of producing the triple $\mathrm{C}-\mathrm{H}$ bond activation of the cyclohexyl group of cyclohexylmethyl ketone [21]. Esteruelas found that the ortho $-(\mathrm{C}-\mathrm{H})$ bond activation is preferred over the ortho-($\mathrm{C}-\mathrm{F}$) bond activation in aromatic ketones with one aromatic ring by phosphine-supported hexahydride osmium complex [22]. Both $\mathrm{C}-\mathrm{F}$ and $\mathrm{C}-\mathrm{H}$ bond activations are favored by an increase of the degree of fluorination of the substrates [23]. We obtained the first organo cobalt(III) complex containing a $[\mathrm{C}-\mathrm{Co}-\mathrm{F}]$ fragment through a cyclometalation reaction involving $\mathrm{C}-\mathrm{F}$ bond activation at a cobalt(I) center with an alda-zine-N atom as an anchoring group [24]. In this paper we present competitive cleavage of $\mathrm{C}-\mathrm{F}$ versus $\mathrm{C}-\mathrm{H}$ bond in the cyclometalation reaction at electron-rich cobalt center with ketone and imine as anchoring group. Through the reaction of $\mathrm{CoMe}\left(\mathrm{PMe}_{3}\right)_{4}$ with 2,6-difluorobenzophenone, another example of organo cobalt(III) complex, $\left[\mathrm{Co}(\mathrm{Me})(\mathrm{F})\left(2-\left(6-\mathrm{FC}_{6} \mathrm{H}_{3}\right)-(\mathrm{C}=\mathrm{O})-\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PMe}_{3}\right)_{2}\right]$ (3), containing a $[\mathrm{C}-\mathrm{Co}-\mathrm{F}]$ fragment was obtained.

2. Results

2.1. Reaction of $\mathrm{Co}\left(\mathrm{PMe}_{3}\right)_{4}$ with 2,6-difluorobenzophenone imine

$\mathrm{Co}\left(\mathrm{PMe}_{3}\right)_{4}$ was combined with 2,6-difluorobenzophenone imine affording the $C-F$ bond activation complex 1 (eq. (1)).

Complex 1 forms purple-blue crystals suitable for X-ray diffraction which decompose above $140{ }^{\circ} \mathrm{C}$. In the IR spectra the characteristic $v(\mathrm{C}=\mathrm{N})$ band was found at $1603 \mathrm{~cm}^{-1}$. The resonance of the $\mathrm{N}-\mathrm{H}$ proton in the ${ }^{1} \mathrm{H}$ NMR spectrum is registered at 8.36 ppm.

Fig. 1. Molecular structure of $\mathbf{1}$ and selected bond distances (\AA) and angles (${ }^{\circ}$): Co1-N1 1.885(3), Co1-P2 2.1904(13), Co1-P3 2.2002(12), Co1-P4 2.2159(13), C1-Co1 1.936(4), C7-N1 1.336(5); N1-Co1-C1 80.91(16), N1-Co1-P2 114.11(11), C1-Co1-P2 86.68(12), N1-Co1-P3 133.89(11), C1-Co1-P3 93.66(13), P2-Co1-P3 111.18(5), P2-Co1-P4 97.46(5), P3-Co1-P4 96.03(5), N1-Co1-P4 86.41(11), C1-Co1-P4 167.26(13), C7-N1-Co1 120.9(3), N1-C7-C6 110.9(4), C6-C1-Co1 113.8(3), C1-C6-C7 112.7(3).

The molecular structure of 1 (Fig. 1) shows a trigonal bipyramidal configuration around cobalt with C 1 and P 4 on axial direction. The bite angle N1-Co1-C1 80.91(16) ${ }^{\circ}$ is smaller than that of complex 4. The sum of internal bond angles of the chelate ring is $\left(539.21^{\circ}\right)$. The distance of C7-N1 (1.336(5) \AA) is close to that ($1.337(8) \AA$) in the reported compound [25]. In comparison with the reaction of $\mathrm{Co}\left(\mathrm{PMe}_{3}\right)_{4}$ with 2,6-difluorobenzophenone [26], the imine group is a better anchoring group than the keto group. The $\mathrm{C}-\mathrm{F}$ bond could be activated by the compensation of chelate effect.

In the proposed mechanism (Scheme 1) the π-coordination of $\mathrm{C}=\mathrm{N}$ double bond to the cobalt(0) center is the first step, which makes closing of cobalt center to the ortho-($\mathrm{C}-\mathrm{F}$) bond and the formation of the intermediate \mathbf{A} possible. Oxidative addition between the $\mathrm{C}-\mathrm{F}$ bond and the cobalt(0) center delivered cobalt(II) intermediate B. B was reduced to cobalt(I) product 1.

In our early work [27], the formation of $\mathrm{F}_{2} \mathrm{PMe}_{3}$ in the reaction of perfluorotoluene with $\mathrm{Co}\left(\mathrm{PMe}_{3}\right)_{4}$ was confirmed via ${ }^{31} \mathrm{P}$ NMR spectroscopy. The fate of the fluorine atom in reaction (1) is not experimentally identifiable.

2.2. Reaction of $\mathrm{CoMe}\left(\mathrm{PMe}_{3}\right)_{4}$ with 2,6-difluorobenzophenone imine

Instead of cobalt(0) complex $\mathrm{Co}\left(\mathrm{PMe}_{3}\right)_{4}$, cobalt(I) complex CoMe ($\left.\mathrm{PMe}_{3}\right)_{4}$ was combined with 2,6-difluorobenzophenone imine affording deep-green crystals of complex 2 through $\mathrm{C}-\mathrm{H}$ bond activation (eq. (2)).

In the IR spectra $v(\mathrm{C}=\mathrm{N})$ absorption was found at $1620 \mathrm{~cm}^{-1}$. The signal of the (NH) group is registered at 8.33 ppm . In the ${ }^{31} \mathrm{P}$ NMR spectra there are three signals for PMe_{3} ligands at 43.9, 33.5

Scheme 1. Proposed mechanism for reaction (1).

Scheme 2. Proposed mechanism for reaction (2).
and 22.1 ppm with the ratio of $1: 1: 1$. All of the data confirm a trigonal bipyramidal configuration around cobalt. A trial to obtain the crystal and molecular structure information through X-ray diffraction has failed.

A proposed reaction mechanism is described in Scheme 2. The imine-N coordination is the first step. With the cyclometalation effect the ortho- $(\mathrm{C}-\mathrm{H})$ bond of the phenyl group in the imine ligand is activated affording an active methyl hydrido cobalt(III) intermeadiate, which affords the product 2 through the escape of methane with reductive elimination.

2.3. Reaction of $\mathrm{CoMe}\left(\mathrm{PMe}_{3}\right)_{4}$ with 2,6-difluorobenzophenone

In the reaction of 2,6-difluorobenzophenone, an iso-electronic compound of 2,6-difluorobenzophenone imine, with CoMe ($\left.\mathrm{PMe}_{3}\right)_{4}$, gave rise to complex 3 (eq. (3)) through C-F bond activation. To the best of our knowledge, after the report of the preparation of the first example of organo cobalt(III) complex containing a [$\mathrm{C}-\mathrm{Co}-\mathrm{F}$] fragment [24], complex 3 is the second example of organo cobalt(III) complex with a $[\mathrm{C}-\mathrm{Co}-\mathrm{F}]$ fragment.

Complex 3 was obtained as violet crystals from pentane at $-27{ }^{\circ} \mathrm{C}$. In the infrared spectra, there is a strong absorption at $1594 \mathrm{~cm}^{-1}$ assigned to $v(\mathrm{C}=\mathrm{O})$ bond, a large bathochromic shift comparing with that ($1677 \mathrm{~cm}^{-1}$) of the free ligand. In the ${ }^{1} \mathrm{H}$ NMR spectra the proton resonance of two anisochrom trimethylphosphine ligands is regarded as a singlet at 0.79 ppm , while the signal of $\mathrm{Co}-\mathrm{CH}_{3}$ could be found at $0.30 \mathrm{ppm}{ }^{31} \mathrm{P}$ NMR data clearly show one signal at 20.4 ppm . Complex 3 crystallized with [$\operatorname{Co}(2,6-$
$\left.\mathrm{F}_{2} \mathrm{C}_{6} \mathrm{H}_{3}-\eta^{2}-(\mathrm{C}=\mathrm{O})-\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PMe}_{3}\right)_{3}$] [26] in $P-1$ space group. The occurrence of complex $\left[\mathrm{Co}\left(2,6-\mathrm{F}_{2} \mathrm{C}_{6} \mathrm{H}_{3}-\eta^{2}-(\mathrm{C}=\mathrm{O})-\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PMe}_{3}\right)_{3}\right]$ in the crystal of complex $\mathbf{3}$ could be attributed to the impurity of CoMe $\left(\mathrm{PMe}_{3}\right)_{4}$ with minor amount of $\mathrm{Co}\left(\mathrm{PMe}_{3}\right)_{4}$.

The molecular structure (Fig. 2) of complex $\mathbf{3}$ confirms the octahedral coordination geometry around the Co1 atom with P1 and P2 on axial direction and F2-O1-C7 and C42 in an equatorial plane. The bite angle of C7-Co1-O1 is $82.45(7)^{\circ}$ which is a little larger than that of the related compounds in early work by Klein et al. [28]. The sum of the angles around the cobalt in metalacycle is 540°. The distance of $\operatorname{Co1-O1}(2.0213(13) \AA$) is longer than that of complex $\left[\mathrm{Co}\left(2,6-\mathrm{F}_{2} \mathrm{C}_{6} \mathrm{H}_{3}-\eta^{2}-(\mathrm{C}=\mathrm{O})-\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PMe}_{3}\right)_{3}\right] \quad[26]$. The distance of Co1-F2 (1.9316(14) A) is in the normal region for Co-F bond lengths [24].

Fig. 2. Molecular structure of $\mathbf{3}$ and selected bond distances (\AA) and angles (${ }^{\circ}$): Co1-C7 1.895(2), Co1-F2 1.9316(14), Co1-O1 2.0213(13), Co1-P1 2.2121(11), Co1-P2 2.2138(10), Co1-C42 1.995(2), O1-C1 1.247(2); C7-Co1-F2 172.02(7), C7-Co1-C42 95.73(9), F2-Co1C42 92.14(8), C7-Co1-O1 82.45(7), F2-Co1-O1 89.71(5), F2-Co1-P1 89.01(5), C42-Co101 177.77(8), C7-Co1-P1 92.52(7), C42-Co1-P1 88.38(9), O1-Co1-P1 90.41(5), C7-Co1P2 94.16(7), F2-Co1-P2 84.83(5), O1-Co1-P2 93.77(5), P1-Co1-P2 172.53(2).

2.4. Reaction of $\mathrm{CoMe}\left(\mathrm{PMe}_{3}\right)_{4}$ with 2,4'-difluorobenzophenone

Under similar reaction conditions, the reaction of $\mathrm{CoMe}\left(\mathrm{PMe}_{3}\right)_{4}$ with $2,4^{\prime}$-difluorobenzophenone afforded the $\mathrm{C}-\mathrm{H}$ activation complex 4 in the yield of 67.0% (eq. (4)).

From the dark brown solution of diethyl ether complex 4 was obtained as the black needle-shaped crystals. In the IR spectra of complex 4 the absorption at $1596 \mathrm{~cm}^{-1}$ belongs to $(\mathrm{C}=0)$ group. In the ${ }^{31}$ P NMR spectra there are two sets of signals with the intensity ratio of $1: 2$ at 43.9 and 17.5 ppm . The ${ }^{19} \mathrm{~F}$ NMR spectrum indicates two signals at -113.2 and -118.8 ppm with the ratio of $1: 1$. All of the spectroscopic data indicate that the activation of $\mathrm{C}-\mathrm{H}$ bond is performed instead of $\mathrm{C}-\mathrm{F}$ bond activation.

The molecular structure of complex 4 was confirmed by X-ray diffraction analysis (Fig. 3). A cobalt atom is centered in a trigonal bipyramid with axial C1 and P2 and a five-membered metallacycle occupying C-axial and O-equatorial position with a bite angle O1-Co1-C1 $=82.5(2)^{\circ}$, comparable with that $\left(82.45(7)^{\circ}\right)$ in complex 3. The sum of the internal angles in the cobaltacycle is 539.7°, close to planarity $\left(540^{\circ}\right)$. The distance of P2-Co1 (2.227(2) A) is longer than P3-Co1 (2.189(2) \AA) and P1-Co1 (2.184(2) \AA), owing to the stronger trans-influence of carbon atom (C1). From reactions ((3) and (4)), in the case of mono-fluorinated aromatic ketone, the reaction of CoMe $\left(\mathrm{PMe}_{3}\right)_{4}$ with $2,4^{\prime}$-difluorobenzophenone afforded only $\mathrm{C}-\mathrm{H}$ activation complex, $\left[\mathrm{Co}\left(2-\left(4-\mathrm{FC}_{6} \mathrm{H}_{3}\right)-(\mathrm{C}=\mathrm{O})-\left(2^{\prime}-\mathrm{FC}_{6} \mathrm{H}_{4}\right)\left(\mathrm{PMe}_{3}\right)_{3}\right](4)\right.$ in comparison with the $\mathrm{C}-\mathrm{F}$ activation in the double-fluorinated aromatic ketone, 2,6-difluorobenzophenone system. Increasing the substituted fluoroatoms in phenyl ring is beneficial for the $\mathrm{C}-\mathrm{F}$ bond activation.

Fig. 3. Molecular structure of 4 and selected bond distances (\AA) and angles (${ }^{\circ}$): P3-Co1 2.189(2), P2-Co1 2.227(2); P1-Co1 2.184(2), Co1-O1 1.905(4), Co1-C1 1.921(6), O1-Co1C1 82.5(2), O1-Co1-P1 115.91(15), C1-Co1-P1 92.2(2), 01-Co1-P3 131.80(15), C1-Co1-P3 90.78(19), P1-Co1-P3 111.99(8), O1-Co1-P2 80.45(14), C1-Co1-P2 162.7(2), P1-Co1-P2 97.76(9), P3-Co1-P2 98.48(8).

3. Conclusions

The $\mathrm{C}-\mathrm{F}$ or $\mathrm{C}-\mathrm{H}$ bond of difluorobenzophenone can not be activated by $\mathrm{Co}\left(\mathrm{PMe}_{3}\right)_{4}$ [26], while the $\mathrm{C}-\mathrm{F}$ or $\mathrm{C}-\mathrm{H}$ bond of the difluorobenzophenone are activated by $\mathrm{CoMe}\left(\mathrm{PMe}_{3}\right)_{4}$. Both Co $\left(\mathrm{PMe}_{3}\right)_{4}$ and $\mathrm{CoMe}\left(\mathrm{PMe}_{3}\right)_{4}$ can activate the $\mathrm{C}-\mathrm{F}$ or $\mathrm{C}-\mathrm{H}$ bond with the better anchoring group $(\mathrm{C}=\mathrm{NH})$ instead of the keto group. The Co-methyl group is beneficial for the $\mathrm{C}-\mathrm{H}$ activation because of the thermodynamic contribution of evolution of methane. Increasing the subsituted fluoroatoms in phenyl ring is advantageous to the $\mathrm{C}-\mathrm{F}$ bond activation.

4. Experimental

4.1. General procedures and materials

Standard vacuum techniques were used in manipulations of volatile and air-sensitive materials. Literature method was used in the preparation of $\mathrm{Co}\left(\mathrm{PMe}_{3}\right)_{4}$ and $\mathrm{CoMe}\left(\mathrm{PMe}_{3}\right)_{4}$ [29]. 2,4'-difluorobenzophenone were used as purchased. 2,6-difluorobenzophenone and 2,6-difluorobenzophenone imine were prepared by published procedures [30,31]. Melting points were measured in capillaries sealed under argon and were uncorrected. Elemental analyses were carried out on an Elementar Vario EL III. Infrared spectra ($4000-400 \mathrm{~cm}^{-1}$), as obtained from Nujol mulls between KBr disks, were recorded on a Nicolet $5700 .{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR (300, 282 and 121 MHz , respectively) spectra were recorded on a Bruker Avance 300 spectrometer. ${ }^{31} \mathrm{P}$ NMR resonances were obtained with broadband proton decoupling. X-ray crystallography was performed with a Bruker Smart 1000 diffractometer.

4.2. Synthesis of $\mathbf{1}$

2,6-difluorobenzophenone imine $0.63 \mathrm{~g}(2.90 \mathrm{mmol})$ in pentane $(30 \mathrm{~mL})$ was mixed at $-80^{\circ} \mathrm{C}$ with $\mathrm{Co}\left(\mathrm{PMe}_{3}\right)_{4} 1.06 \mathrm{~g}(2.92 \mathrm{mmol})$ in 30 mL of pentane. On warming, the reaction mixture turned blue and was stirred for 18 h at $20^{\circ} \mathrm{C}$. Crystallization in pentane at -27 afforded complex 1 as purple-blue crystals. Yield: 0.75 g (56.3\%). Dec $>140{ }^{\circ} \mathrm{C}$. Analysis for $\mathrm{IC}_{22} \mathrm{H}_{36} \mathrm{CoFNP}_{3}$, [found (calculated)]: C, 54.11 (54.44); H, 7.13 (7.48). IR (Nujol): $1603 v(\mathrm{C}=\mathrm{N}), 1576 v(\mathrm{C}=\mathrm{C})$, $3195 v(\mathrm{~N}-\mathrm{H}), 946 v\left(\mathrm{PMe}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}$): $\delta 0.90$ (s(br), 27H, PCH ${ }_{3}$), 6.63-7.77 (m, 8H, CH arom), 8.36 ($\mathrm{s}, \mathrm{H}, \mathrm{NH}$). ${ }^{31} \mathrm{P}$ NMR ($121.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}$): $\delta 45.3\left(\mathrm{~s}, \mathrm{P}, \mathrm{PCH}_{3}\right), 14.1\left(\mathrm{~s}, 2 \mathrm{P}, \mathrm{PCH}_{3}\right)$.

4.3. Synthesis of $\mathbf{2}$

A solution of $0.69 \mathrm{~g}(1.82 \mathrm{mmol})$ of $\mathrm{CoMe}\left(\mathrm{PMe}_{3}\right)_{4}$ in 30 mL of pentane was combined with a solution of 2,6-difluorobenzophenone imine $0.40 \mathrm{~g}(1.82 \mathrm{mmol})$ in pentane (30 ml) at $-80^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to ambient temperature and stirred for 18 h , turning green. Crystallization in pentane at $-27^{\circ} \mathrm{C}$ afforded complex $\mathbf{2}$ as deep-green crystals. Yield: $0.50 \mathrm{~g}(54.3 .0 \%)$. Analysis for $2 \mathrm{C}_{22} \mathrm{H}_{35} \mathrm{CoF}_{2} \mathrm{NP}_{3}$, [found (calculated)]: C, 52.15 (52.49); H, 6.83 (7.01). IR (Nujol): $1620 v(\mathrm{C}=\mathrm{N}), 1589 v(\mathrm{C}=$ C), $3193 v(\mathrm{~N}-\mathrm{H}), 946 v\left(\mathrm{PMe}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}$): $\delta 0.92$ (s(br), 27H, PCH_{3}), $6.65-7.73$ (m, $7 \mathrm{H}, \mathrm{CH}_{\text {arom }}$), $8.33(\mathrm{~s}, \mathrm{H}, \mathrm{NH})$. ${ }^{31} \mathrm{P}$ NMR ($121.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}$): $\delta 43.9$ ($\mathrm{s}, 1 \mathrm{P}, \mathrm{PCH}_{3}$), 33.5 ($\mathrm{s}, 1 \mathrm{P}$, PCH_{3}), 22.1 ($\mathrm{s}, 1 \mathrm{P}, \mathrm{PCH}_{3}$).

4.4. Synthesis of $\mathbf{3}$

A solution of $0.83 \mathrm{~g}(3.81 \mathrm{mmol})$ 2,6-difluorobenzophenone in 30 mL pentane was combined with a solution of $1.44 \mathrm{~g}(3.81 \mathrm{mmol})$ $\mathrm{CoMe}\left(\mathrm{PMe}_{3}\right)_{4}$ in 30 mL pentane at $-80^{\circ} \mathrm{C}$. This reaction mixture was allowed to warm to ambient temperature and stirred for 18 h
to form deep-red solution with green deposition in the bottom. Crystallization from pentane at $-30^{\circ} \mathrm{C}$ yielded violet single crystals 3 (0.61 g , yield 36.3%). Analysis for $3 \mathrm{C}_{20} \mathrm{H}_{29} \mathrm{CoF}_{2} \mathrm{OP}_{2}$, [found (calculated)]: C, 53.93 (54.06); H, 6.32 (6.58). Dec > $150{ }^{\circ} \mathrm{C}$. IR (Nujol): $1594 v(\mathrm{C}=\mathrm{O}), 1541 v(\mathrm{C}=\mathrm{C}), 944 v\left(\mathrm{PMe}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}$): $\delta 0.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.79$ (s(br), $18 \mathrm{H}, \mathrm{PCH}_{3}$), $6.33-7.75$ (m, 8H, CH arom). ${ }^{31} \mathrm{P}$ NMR ($121.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}$): $\delta 20.4$ (s, 2P).

4.5. Synthesis of $\mathbf{4}$

A solution of $0.50 \mathrm{~g}(1.32 \mathrm{mmol})$ of $\mathrm{CoMe}\left(\mathrm{PMe}_{3}\right)_{4}$ in 30 mL of pentane was combined with a solution of $2,4^{\prime}$-difluorobenzophenone $0.28 \mathrm{~g}(1.32 \mathrm{mmol})$ in pentane (30 ml) at $-80^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to ambient temperature and stirred for 18 h , turning deep-brown. Crystallization in pentane at -27 afforded complex 4 as red-brown crystals. Yield: 0.60 g (67.0\%). Analysis for $4 \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{CoF}_{2} \mathrm{OP}_{3}$, [found (calculated)]: C, 52.11 (52.39); H, 6.52 (6.79). IR (Nujol): $1596 v(\mathrm{C}=\mathrm{O}), 1572 v(\mathrm{C}=\mathrm{C}), 936 v$ (PMe_{3}). ${ }^{1} \mathrm{H}$ NMR ($300.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}$): $\delta 0.81-1.04$ (s(br), 27H, PCH_{3}), $6.50-8.18$ ($\mathrm{m}, 7 \mathrm{H}, \mathrm{CH}_{\text {arom }}$). ${ }^{31} \mathrm{P}$ NMR ($121.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, $300 \mathrm{~K}): \delta 43.9\left(\mathrm{~s}, \mathrm{P}, \mathrm{PCH}_{3}\right), 17.5\left(\mathrm{~s}, 2 \mathrm{P}, \mathrm{PCH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR $(282.4 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{~K}\right): \delta-113.2(\mathrm{~s}, 1 \mathrm{~F}),-118.8(\mathrm{~s}, 1 \mathrm{~F})$.

4.6. X-ray structure determinations

Intensity data were collected on a Bruker SMART diffractometer with graphite-monochromated $\mathrm{Mo} \mathrm{K} \alpha$ radiation ($\lambda=0.71073 \mathrm{~A}$). Crystallographic data for complexes $\mathbf{1 , 3}+\mathrm{Co}\left(2,6-\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~F}_{2}-\mathrm{CO}\left(\eta^{2}\right)-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PMe}_{3}\right)_{3}$ [26], and $\mathbf{4}$ are summarized in Table 1. The structures

Table 1
Crystallographic data for complexes $\mathbf{1 ,} \mathbf{3}\left(+\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{CoF}_{2} \mathrm{OP}_{3}[26]\right)$, and 4 .

	$\mathbf{1}$	$\mathbf{3}\left(+\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{CoF}_{2} \mathrm{OP}_{3}[26]\right)$	$\mathbf{4}$
Mol wt	$\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{CoFNP}_{3}$	$\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{Co}_{2} \mathrm{~F}_{4} \mathrm{O}_{2} \mathrm{P}_{5}$	$\mathrm{C}_{22} \mathrm{H}_{3} \mathrm{CoF}_{2} \mathrm{OP}_{3}$
FW	485.36	949.64	504.33
Crystal system	Triclinic	Triclinic	Monoclinic
Space group	$P-1$	$P-1$	$P 2(1) / c$
$a(\AA \AA)$	$9.291(2)$	$9.0550(18)$	$8.531(3)$
$b(\AA(\AA)$	$10.688(3)$	$16.355(3)$	$17.705(5)$
$c(\AA)$	$13.338(3)$	$18.032(4)$	$33.660(10)$
$\alpha\left({ }^{\circ}\right)$	$94.001(4)$	$64.23(3)$	90
$\beta\left({ }^{\circ}\right)$	$102.089(4)$	$79.46(3)$	$92.237(6)$
$\gamma\left(^{\circ}\right)$	$99.587(4)$	$79.30(3)$	90
$V\left(\AA^{3}\right)$	$1269.4(5)$	$2347.2(8)$	$5081(3)$
Z	2	2	2
$\mathrm{~T}, \mathrm{~K}$	273	273	273
Crystal size (mm)	0.25×0.20	0.34×0.25	0.32×0.36
	$\times 0.20$	$\times 0.27$	$\times 0.28$
$D_{\mathrm{c}}\left(\mathrm{g}\right.$ cm $\left.{ }^{-3}\right)$	1.270	1.344	1.319
No. of rflns	7568	15,085	25,565
\quad collections			
No. of independent	5612	9113	9732
rflns			
Parameters	262	587	523
$R_{\text {int }}$	0.0259	0.0774	0.0681
$\theta_{\text {max }}\left({ }^{\circ}\right)$	28.00	26.81	25.63
$R 1(I>2 \sigma(I))$	0.0661	0.0408	0.0797
$w R 2$ (all data)	0.2142	0.1244	0.2638

were solved by direct methods and refined with full matrix leastsquares on all F^{2} (SHELXL-97) with non-hydrogen atoms anisotropic.

Acknowledgment

We gratefully acknowledge the support by NSF China No. 20772072/20972087.

Appendix A. Supplementary materials

CCDC 742942,742940 and 742943 contain the supplementary crystallographic data for complexes $\mathbf{1 , 3}\left(+\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{CoF}_{2} \mathrm{OP}_{3}[26]\right)$, and 4. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/datarequest/cif.

References

[1] T.G. Richmond, S. Murai, Topics in organometallic chemistry 3 (1999) 243-269.
[2] J.L. Kiplinger, T.G. Richmond, J. Am. Chem. Soc. 118 (1996) 1805-1806.
[3] J.L. Kiplinger, T.G. Richmond, C.E. Osterberg, Chem. Rev. 94 (1994) 373-431.
[4] T. Braun, R.N. Perutz, Chem. Commun. (2002) 2749-2757.
[5] J. Burdeniuc, B. Jedlicka, R.H. Crabtree, Chem. Ber. 130 (1997) 145-154.
[6] W.D. Jones, J. Chem. Soc. Dalton Trans. (2003) 3991-3995.
[7] E.F. Murphy, R. Murugavel, H.W. Roesky, Chem. Rev. 97 (1997) 3425-3468.
[8] M. Aizenberg, D. Milstein, Science 265 (1994) 359-361.
[9] M. Weydert, R.A. Andersen, R.G. Bergman, J. Am. Chem. Soc. 115 (1993) 8837-8838.
[10] B.L. Edelbach, W.D. Jones, J. Am. Chem. Soc. 119 (1997) 7734-7742.
[11] J.L. Kiplinger, T.G. Richmond, J. Chem. Soc. Chem. Commun. (1996) 1115-1116.
[12] B.L. Edelbach, A.K.F. Rahman, R.J. Lachicotte, W.D. Jones, Organometallics 18 (1999) 3170-3177.
[13] B.M. Kraft, R.J. Lachicotte, W.D. Jones, J. Am. Chem. Soc. 123 (2001) 10973-10979.
[14] R.J. Young Jr., V.V. Grushin, Organometallics 18 (1999) 294-296.
[15] M.K. Whittlesey, R.N. Perutz, M.H. Moore, Chem. Commun. 6 (1996) 787-788.
[16] M. Aizenberg, D. Milstein, J. Am. Chem. Soc. 117 (1995) 8674-8675.
[17] A. Nova, S. Erhalt, N.A. Jasim, R.N. Perutz, S.A. Macgregor, J.E. McGrady, A.C. Whitewood, J. Am. Chem. Soc. 130 (2008) 15499-15511.
[18] S. Camadanli, R. Beck, H.-F. Klein, Dalton Trans. (2008) 5701-5704.
[19] S.A. Johnson, E.T. Taylor, S.J. Cruise, Organometallics 28 (2009) 3842-3855.
[20] X. Zhang, M. Kanzelberger, T.J. Emge, A.S. Goldman, J. Am. Chem. Soc. 126 (2004) 13192-13193.
[21] P. Barrio, R. Castarlenas, M.A. Esteruelas, E. Onate, Organometallics 20 (2001) 2635-2638
[22] P. Barrio, R. Castarlenas, M.A. Esteruelas, A. Lledos, F. Maseras, E. Onate, J. Tomas, Organometallics 20 (2001) 442-452.
[23] M. Crespo, J. Granell, M. Font-Bardia, X. Solans, J. Organomet. Chem. 689 (2004) 3088-3092.
[24] X. Li, H. Sun, F. Yu, U. Flörke, H.-F. Klein, Organometallics 25 (2006) 4695-4697.
[25] H.-F. Klein, S. Camadanli, R. Reck, D. Leukel, Angew. Chem. Int. Ed. 44 (2005) 975-977.
[26] J. Ding, X. Li, Acta Crystallogr. Sect. E. Struct. Rep. Online 65 (2009) m495-m496.
[27] T. Zheng, H. Sun, Y. Chen, X. Li, S. Durr, U. Radius, K. Harms, Organometallics 28 (2009) 5771-5776.
[28] H.-F. Klein, K. Ellrich, S. Lamac, G. Lull, L. Zsolnai, G. Huttner, Z. Naturforsch. B: Anorg. Chem. Org. Chem. 40 (1985) 1377-1382.
[29] H.-F. Klein, H.H. Karsch, Chem. Ber. 108 (1975) 944-955.
[30] B. Zhao, X. Lu, Tetrahedron Lett. 47 (2006) 6765-6768.
[31] J.M. Birchall, R.N. Haszeldine, M.E. Jones, J. Chem. Soc. (C) (1971) 1343-1348.

[^0]: * Corresponding author. Tel.: +86 53188361350 ; fax: + 8653188564464.

 E-mail address: xli63@sdu.edu.cn (X. Li).

